

INVENTORY OF PUTRAJAYA GREENHOUSE GAS EMISSIONS 2013

The 2013 Greenhouse gas emissions for Putrajaya were calculated based on seven sectors namely:

- I Government buildings
- ii. Commercial buildings
- iii. Public amenities and facilities
- iv. Residential
- v. Passenger transport
- vi. Freight transport and
- vii. Solid waste

The overall GHG emissions for year 2013 were 1,316ktCO₂eq as compared to 1,120ktCO₂eq for year 2012. This due to various factors such as the increase in the completed building floor space, the number of population as well as the number of workers. Emissions per capita were 13.2tCO₂eq.

Figure 1 summarises the GHG emissions level for 2013 as compared to the base year 2007 and the taget year 2025.

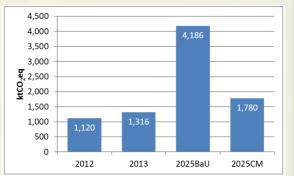


Figure 1: GHG Emissions Comparison



Figure 2: GHG Emissions per Capita

The inventory results indicates that the highest GHG emissions is from the building sector at 72% (953 ktCO₂eq), followed by the transportation sector at 24% (312ktCO₂eq) and solid waste at 4% (51ktCO₂eq).

The same scenario is observed since 2012 and this is closely related to the delopment of government office complexes, commercial premises as well as residential premises in 2013.

The highest source of GHG emissions is from the use of electricity at 58% (785ktCO₂eq), followed by petroleum at 22% (288ktCO₂eq) and natural gas at 16% (214ktCO₂eq). This indicates that the citywide energy sources are still dependent on non-renewable energy.

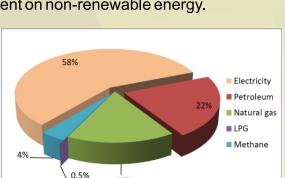


Figure 4: GHG emissions by source

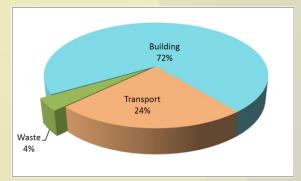


Figure 3: GHG Emissions based on Three Main Scopes

Sector	2012	2013	2025BaU	2025CM
Residential	59	79	266	150
Government Buildings	461	600	363	139
Commercial Buildings	207	240	1435	769
Public amenities and facilities	21	34	240	112
Passenger transport	316	305	1314	368
Freight transport	7	7	156	89
Solid Waste	49	51	414	189
Total Emissions	1,120	1,316	4,186	1,815
Carbon sink				35
Net Emissions	1,120	1,316	4,186	1,780

Table 1: Comparison of GHG Emissions by Seven Sectors

Carbon Emissions from Building Sector

The building sector still remains the highest sector in terms of energy consumption. The distribution of floor area by bulding types are as follows; 46% residential floor area, 34% for government building space, 7% for commercial space and 13% for public amenties and facilities

A total of 63% of emissions in the building sector is contributed by government office buildings followed by commercial buildings at 25%.

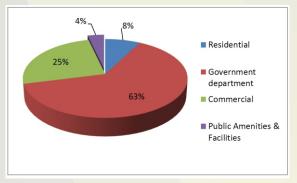


Figure 5: Carbon Emissions from building sector

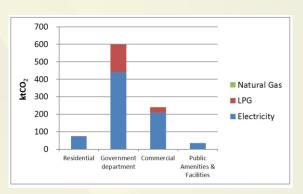


Figure 6: Building Sector Carbon Emissions by source

Carbon Emissions from Transportation Sector

Transporation sector was the second highest in energy consumption in Putrajaya. The increase in the number of population and workers resulted in the increase in trip generations. This scenario can be observed from the records of incoming and outgoing persons in and out of Putrajaya.

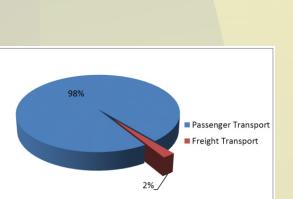
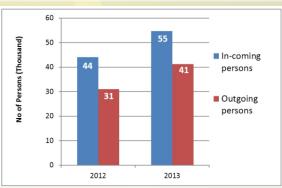


Figure 8: Carbon Emissions from **Transportation Sector**



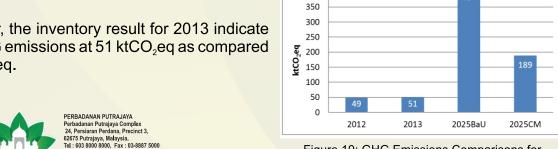

Figure 7: Incoming & Outgoing Persons Comparison

Figure 9: Carbon Emissions from Transportation Sector by Source

Carbon Emissions from Solid Waste Sector

In the waste sector, the inventory result for 2013 indicate an increase in GHG emissions at 51 ktCO₂eq as compared to 2012 at 49ktCO₂eq.

450

400

Figure 10: GHG Emissions Comparisons for Waste Sector

